If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+5x-9=0
a = 7; b = 5; c = -9;
Δ = b2-4ac
Δ = 52-4·7·(-9)
Δ = 277
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{277}}{2*7}=\frac{-5-\sqrt{277}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{277}}{2*7}=\frac{-5+\sqrt{277}}{14} $
| 52x+1=51x+3 | | -31-4g=-5-5(1+5g) | | 4x²x=5/6 | | 16=-2t+26 | | -X5y=13 | | 1/7b=-4 | | d+10=–9d−10 | | 23=c/35 | | 4n−12=20 | | 3(-5x+4)=2 | | x/4.6=8.9 | | x/7.1=3.7 | | t-12.5=48.6 | | 49/56=x/32 | | 2w2–11w+14=0 | | 2/x/5=3 | | 42=42p | | 800+10c=150+5c | | 30/x=55/66 | | 5/t=0.5/0.5 | | -4x=8x-10x= | | 72+2n=–10 | | -8=f/2-10 | | 62+4=20f+6 | | 63=-10a+93 | | 20/y=5y= | | -10x=390 | | 8.5/x=55 | | -3x-5=11+1x | | -10=k+2-6 | | 3u-9=(-3) | | 2(3x-3)+3x-5=16 |